Fusion of Directional Spatial Discriminant Features for Face Recognition
نویسندگان
چکیده
منابع مشابه
Face Recognition by Cognitive Discriminant Features
Face recognition is still an active pattern analysis topic. Faces have already been treated as objects or textures, but human face recognition system takes a different approach in face recognition. People refer to faces by their most discriminant features. People usually describe faces in sentences like ``She's snub-nosed'' or ``he's got long nose'' or ``he's got round eyes'' and so like. These...
متن کاملAutomatic Face Recognition via Local Directional Patterns
Automatic facial recognition has many potential applications in different areas of humancomputer interaction. However, they are not yet fully realized due to the lack of an effectivefacial feature descriptor. In this paper, we present a new appearance based feature descriptor,the local directional pattern (LDP), to represent facial geometry and analyze its performance inrecognition. An LDP feat...
متن کاملUsing Kernel Discriminant Analysis and 2DGabor Local Features Fusion for Face Recognition
A novelty method of 2DGabor-KDA(kernel Fisher discriminant analysis) for face recognition is proposed. This involves convolving face images which are segmented into several sub-areas according to the five particular face parts are extracted through 2DGabor wavelet, average values are calculated from feature vectors gained from the corresponding pixel of each test sample and then the eigenvector...
متن کاملLearning Discriminant Face Descriptor for Face Recognition
Face descriptor is a critical issue for face recognition. Many local face descriptors like Gabor, LBP have exhibited good discriminative ability for face recognition. However, most existing face descriptors are designed in a handcrafted way and the extracted features may not be optimal for face representation and recognition. In this paper, we propose a learning based mechanism to learn the dis...
متن کاملDiscriminant Learning for Face Recognition
An issue of paramount importance in the development of a cost-effective face recognition (FR) system is the determination of low-dimensional, intrinsic face feature representation with enhanced discriminatory power. It is well-known that the distribution of face images, under a perceivable variation in viewpoint, illumination or facial expression, is highly non convex and complex. In addition, ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Procedia Technology
سال: 2013
ISSN: 2212-0173
DOI: 10.1016/j.protcy.2013.12.418